On (non-)exponential decay in generalized thermoelasticity with two temperatures
نویسندگان
چکیده
منابع مشابه
On (non-)exponential decay in generalized thermoelasticity with two temperatures
We study solutions for the one-dimensional problem of the Green-Lindsay and the Lord-Shulman theories with two temperatures. First, existence and uniqueness of weakly regular solutions are obtained. Second, we prove the exponential stability in the Green-Lindsay model, but the nonexponential stability for the Lord-Shulman model.
متن کاملExponential Decay in Nonsimple Thermoelasticity of Type Iii
This paper deals with the model proposed for nonsimple materials with heat conduction of type III. We analyze first the general system of equations, determine the behavior of its solutions with respect to the time and show that the semigroup associated with the system is not analytic. Two limiting cases of the model are studied later.
متن کاملOn the Backward in Time Problem for the Thermoelasticity with Two Temperatures
This paper is devoted to the study of the existence, uniqueness, continuous dependence and spatial behaviour of the solutions for the backward in time problem determined by the Type III with two temperatures thermoelastodynamic theory. We first show the existence, uniqueness and continuous dependence of the solutions. Instability of the solutions for the Type II with two temperatures theory is ...
متن کاملGeneralized Theory of Micropolar-fractional-ordered Thermoelasticity with Two-temperature
In this paper, a new theory of generalized micropolar thermoelasticity is derived by using fractional calculus. The generalized heat conduction equation in micropolar thermoelasticity has been modified with two distinct temperatures, conductive temperature and thermodynamic temperature by fractional calculus which depends upon the idea of the RiemannLiouville fractional integral operators. A un...
متن کاملThermoelasticity and generalized thermoelasticity viewed as wave hierarchies
It is seen how to write the standard form of the four partial differential equations in four unknowns of anisotropic thermoelasticity as a single equation in one variable, in terms of isothermal and isentropic wave operators. This equation, of diffusive type, is of the eighth order in the space derivatives and seventh order in the time derivatives and so is parabolic in character. After having ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics Letters
سال: 2017
ISSN: 0893-9659
DOI: 10.1016/j.aml.2017.02.020